Napenergia

A napenergia hasznosítása

A Napból a földfelszínre körülbelül 70 - 80 MW/m2 energia érkezik. Az energia sűrűség a föld atmoszférájának szélén átlagosan 1367 W/m2. Ez azt jelenti, hogy évenként megközelítőleg 219 milliárd GWh sugárzási energia éri el a földfelszínt, ami 2500-szorosa napjaink teljes energia szükségletének. Hozzávetőleg három óra napsugárzás képes fedezni földünk éves energia szükségletét.

A légkörben jelen lévő vízpára és jég kristályok elnyelésének eredményeképp a földfelszínt ténylegesen elérő sugárzási energia 1000 W/m2, sík felszínen, a nap legmagasabb állásában. A beeső sugárzási energia a légköri körülmények függvényében 50 W/m2 -től (erősen felhős idő) 1200 W/m2-ig (optimális felhőzet) változik. Európában a napi átlagos sugárzási energia 2.2 - 4.8 kWó/m2nap.

Ennek ellenére ezt az energiaforrást jelenleg alig használjuk ki, pedig kétségtelenül számos kedvező tényező szól alkalmazása mellett:

  • mindenki számára könnyen elérhető,
  • tiszta, környezetkímélő energiaforrás,
  • még sok millió évig rendelkezésre fog állni,
  • kíméli a nyersanyagkészletet,
  • kedvezően hat a helyi gazdaságra,
  • mnem kell szállítani, hozzájutásához nem kell költséges közműhálózat,
  • átalakítási, felhasználási költségei minimálisak.


Azok a készülékek, amelyek a napenergiát képesek számunkra hatékony módon hasznosítani a napkollektorok és a napelemek (aktív napenergia hasznosítás). Közvetett módon a hőszivattyúk is a napenergiát hasznosítják, a talaj a talajvíz, a levegő közvetíti a napenergiát, amit a hőszivattyú hasznosítani képes. Ezekkel a berendezésekkel a jelenlegi energiaszükségletünknek csupán 2 %-át, míg a fejlett ipari országokban is csupán 7 %-át fedezik. Ezen a tényen saját érdekünkben jelentős fejlődést kell elérnünk!

Az EU 2050-re megcélozta, hogy energiaszükségletünk 60 %-át kell biztosítani megújuló energiaforrásokból ! Hazánk éghajlati viszonya lehetővé teszi, hogy gazdaságosan hasznosíthassuk a napenergiát napkollektorokkal, napelemekkel. Évente 2000 - 2200 a napsütéses órák száma, aminek köszönhetően évi 1200-1800 kWó/év/kollektor m2 energiával számolhatunk. Magyarország jelenleg energiahordozó szükségletének 65-70 %-át importból biztosítja!

A napkollektor

A napkollektorok hatékonysága függ annak helyzetétől, a napkollektor felület dőlésszögétől és annak tájolásától. A napkollektorokat optimálisan dél felé kell tájolni.
Amennyiben a tető kelet-nyugati tájolású az egész napkollektor felületet a nyugati tetőre kell elhelyezni. Általában a nyugati tető felületet kevesebb eső, jégeső vihar éri, magasabb a külső napi átlag hőmérséklet, így a nyugati tájolású napkollektor felülettel magasabb teljesítmény érhető el, mint a keleti tájolásúval.
A napkollektor dőlésszögét úgy kell megválasztani, hogy a felhasználási időszakban optimális működést biztosítson. Fontos figyelembe venni, hogy az éves napsugárzási energia 2/3-a a nyári időszakban éri a földfelszínt. Ha teljesen nyári üzemre tervezzük napkollektoros rendszerünket (medence fűtés, nyaraló használati melegvíz ellátása stb.), akkor az optimális napkollektor dőlésszög 15° és 25° között van, mivel nyáron a nap magasabban helyezkedik el az égen. Ha a napkollektoros rendszert egész éves üzemre tervezzük (használati melegvíz ellátás, alacsony hőmérsékletű fűtés), akkor 45° és 60° közötti napkollektor dőlésszög szolgáltatja az optimális teljesítményt. A napkollektorok elhelyezhetőek függőleges helyzetben az épület déli homlokzatán, ugyanis az átmeneti időszakokban és télen a nap alacsonyabban helyezkedik el az égen, így megfelelő teljesítményt biztosítanak a függőleges déli tájolású napkollektorok is.

A napelem működése

Hogy megértsük a fotocellák működési elvét, meg kell ismernünk azok építő elemeit és a fény természetét. A szolár cellák két fajta anyagot tartalmaznak, ezeket gyakran p-típiusú és n-típusú félvezetőknek nevezzük. Bizonyos hullámhosszú fény képes a félvezető atomjainak ionizációjára, ezáltal a beeső fotonok többlet töltéshordozókat keltenek. A pozitív töltéshordozók (lyukak) a p-rétegben, míg a negatív töltéshordozók (elektronok) az n-rétegben lesznek többségben. A két ellentétes töltésű réteg töltéshordozói habár vonzzák egymást csak egy külső áramkörön keresztül áramolva képesek rekombinálódni, a köztük lévő potenciál lépcső miatt.

Egy fotoelektromos cella teljesítményét a következő három dolog határozza meg:

  • a típusa és mérete a szolár cella anyagának,
  • a fény intenzitása,
  • a fény hullámhossza.

A szimpla Si kristály alapú szolár cellák például nem képesek a napsugárzás energiájának 25 %-nál többet elektromos árammá alakítani, mivel az infravörös tartományban a fénynek nincs elég energiája, hogy ionizálja a félvezető atomjait. A Polikristályos Si szolár cellák hatásfoka 20 % körüli, az amorf Si celláké 10 %.
Egy tipikus Si kristály alapú szolár cella 1.5 W / 100 cm2 teljesítményt ad le 0.5 V DC feszültség és 3 A áram formájában teljes nyári napsütésnél (1000 W / m2). A leadott teljesítmény szinte egyenesen arányos a napsütés intenzitásával. Egy fontos tulajdonsága a szolár celláknak, hogy a cella feszültsége nem függ a méretétől, és nem befolyásolja a fény intenzitásának változása sem. Így a szolár cella áramerőssége szinte egyenes arányban van a cella méretével és a fény intenzitásával. Tehát a különböző napelemek összehasonlítására a áramerősség / felületegység (A / cm2) mérőszám ad felvilágosítást.
A szolár cellákat sok különböző méretben és formában állítják elő, a felhasználási területnek megfelelően. A kisebb bélyeg méretűektől a néhány 10 centiméteresig. A cellák összekapcsolásával szolár modulokhoz jutunk. Ezekből a modulokból állítják elő a felhasználó számára a szolár rendszert. A napelemes rendszerek mérete egyebek közt függ a napsugárzás mennyiségétől, az elhelyezéstől és a felhasználói igényektől. A napelemes rendszer a szolár cellákon kívül tartalmazza még az elektromos csatlakozásokat, az illesztési eszközöket, teljesítmény szabályozókat, és az akkumulátorokat.